Clustering and Synchronizing Multi-Camera Video via Audio Fingerprinting

Nicholas J. Bryan, Paris Smaragdis*, and Gautham Mysore*

Stanford University | CCRMA
*Advanced Technology Labs | Adobe Systems

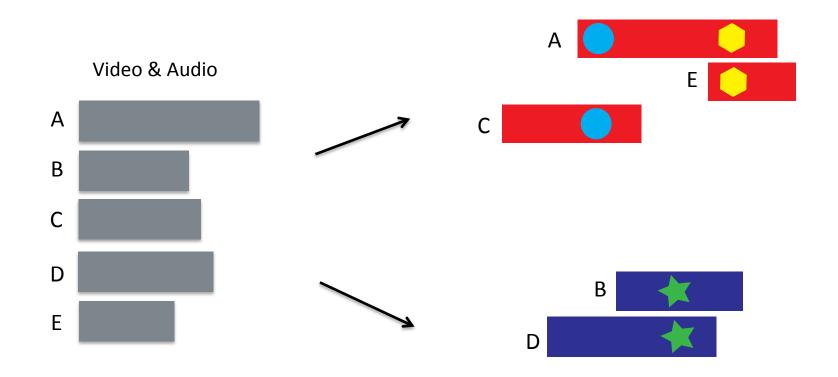
CCRMA DSP Seminar, November 13th 2012

Outline

- I Introduction
- II Proposed Method
 - Non-Linear Transform
 - Time-Difference-Of-Arrival Estimation
 - Clustering
 - Synchronization Refinement
 - Efficient Computation
- III Evaluation
- IV Conclusions

Introduction

 Identify and synchronize multiple videos of the same event



Motivation

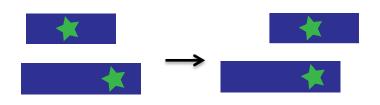
Proliferation of mobile devices

- Multiple videos of a single event common
 - Moments in history
 - Weddings, concerts, speeches, film sets

- Desired to easily edit video together
 - Grouping/Clustering (Manual)
 - Synchronization (Manual, Hardware)

Traditional Video Capture

- Dual System Workflow
 - 1 Videographer
 - 1 Sound Engineer



- Multi-Camera Workflow
 - 2+ Videographer
 - 1+ Sound Engineer

Crowd-Sourced Multi-Camera Video

1 Wedding

- ≈ 300 guest
- ≈ 100 smartphones/cameras
- ≈ 10+ videos of "I do"

• 1 concert

- ≈ 15,000 people
- ≈ 5,000 smartphones
- ≈ 100+ of video clips/song
- ≈ 1000+ video clips/concert

1 presidential speech

- ≈ 200,000 people
- ≈ 70,000 smartphones
- ≈ 10,000+ videos

Demo Video

Taylor Swift's "Fearless"

Outline

- I Introduction
- II Proposed Method
 - Non-Linear Transform
 - Time-Difference-Of-Arrival Estimation
 - Clustering
 - Synchronization Refinement
 - Efficient Computation
- III Evaluation
- IV Conclusions

General Approach

- Use audio
 - Typically more "global"
 - Allows visually disjoint video
- Time-difference-of-arrival estimation
 - For each pair of clips in collection, compute time offset which best synchronizes the given pair using standard correlation
 - Use correlation signals to decide if the two files should match or not

Problems

Computationally expensive

No accurate (straightforward) clustering method

Not robust

Audio Fingerprinting

- Short-duration signatures via feature extraction
- Finds identical (or similar) matches of unknown clip with DB
- Hash fingerprints for fast search and retrieval
- Shazam, SoundHound, Philips, Gracenote, etc.
- See [Wang 2003] & [Haitsma and Kalker 2003]

Audio Fingerprinting for Multi-Camera

- Slightly different problem
 - Group all clips in DB (multiple matching)
 - Time synchronize all clips within each group

- Audio-fingerprinting for multi-camera
 - Principal of most methods yield sync offset
 - Robust and fast!
 - Initial work over the last few years[Shrestha et al. 2007] & [Kennedy and Naaman 2009]

Proposed Method

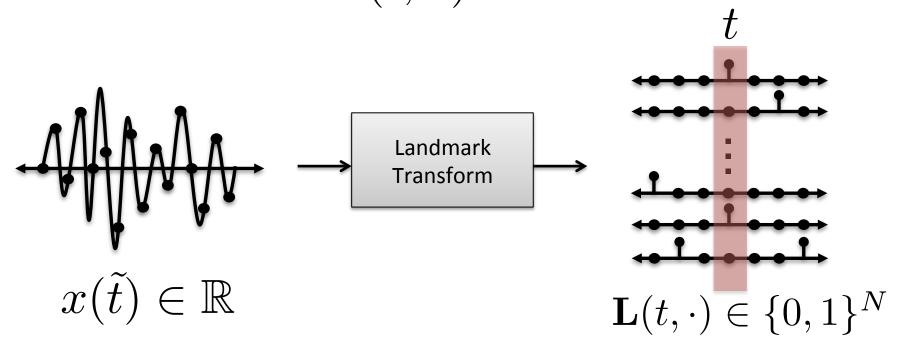
- 1. Non-Linear Transform (Fingerprinting Step)
- 2. Time-Difference-Of-Arrival Estimation
- 3. Clustering
- 4. Synchronization Refinement
- 5. Efficient Computation

Outline

- I Introduction
- II Proposed Method
 - Non-Linear Transform
 - Time-Difference-Of-Arrival Estimation
 - Clustering
 - Synchronization Refinement
 - Efficient Computation
- III Evaluation
- IV Conclusions

Non-Linear (Landmark) Transform

• Convert time-domain audio signal x(t) into a high-dimensional, sparse, binary landmark signal $\mathbf{L}(t,h)$

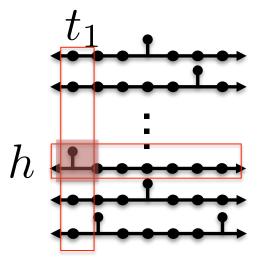


Landmarks

- Spectral peak pairs as landmarks [Wang 2003]
 - Short-time Fourier transform
 - Landmark = $[f1, f2, \Delta t]$ + absolute time offset
 - Place each landmark in appropriate location in $\mathbf{L}(t,h)$

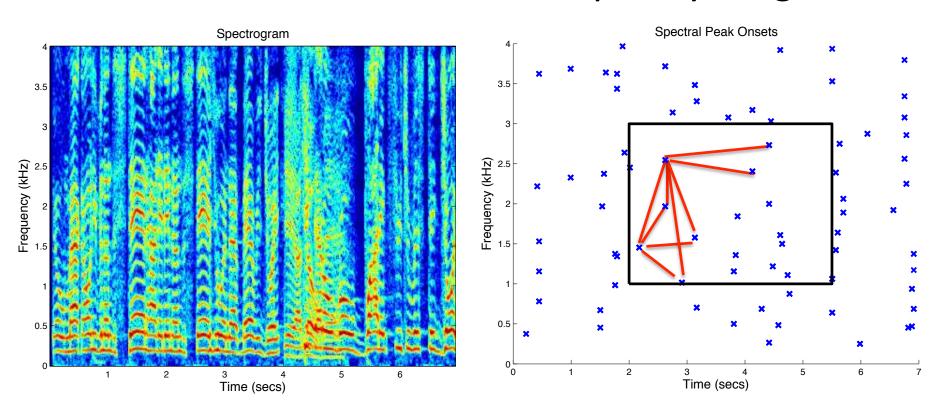
$$(t_1,h=[f_{t_1}^1,f_{t_2}^2,t_2-t_1])$$

$$\mathbf{L}(t_1,h)=1$$



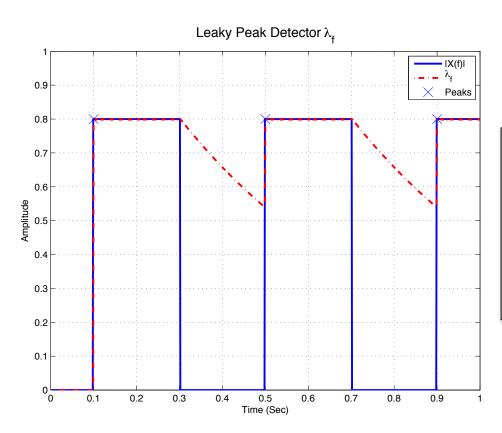
Landmarks as Constellations

 With a large number of peaks, peak pairs are created in a limited time-frequency range



Simple Frequency Peak Detector

- Short-time Fourier transform
- Leaky integrator peak detector for each FFT bin



Leaky Peak Detector

$$\begin{array}{ll} \text{if} & |X(f)| > \hat{\lambda}_f \\ & \hat{\lambda}_f = |X(f)| \quad \text{//Peak Onset} \\ & \text{else} \\ & \hat{\lambda}_f = \hat{\lambda}_f - (1 - e^{-1/(\tau_f f_s)}) \hat{\lambda}_f \end{array}$$

Outline

- I Introduction
- II Proposed Method
 - Non-Linear Transform
 - Time-Difference-Of-Arrival Estimation
 - Clustering
 - Synchronization Refinement
 - Efficient Computation
- III Evaluation
- IV Conclusions

Time-Difference-Of-Arrival Estimation

- Pairwise cross-correlation method
 - Correlate each track with each other
 - Find argmax for offset
 - i.e. Matched filter

$$R_{ij}(t) = \sum_{\tau = -\infty}^{\infty} x_i(\tau) x_j(t + \tau)$$

Landmark Cross-Correlation

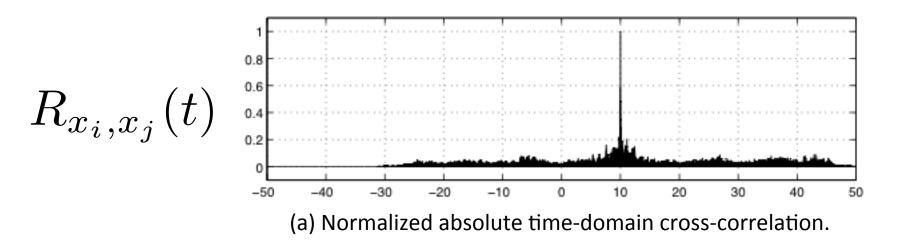
Landmark cross-correlation

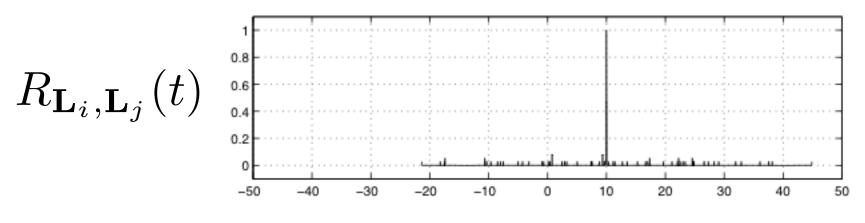
$$R_{\mathbf{L}_i,\mathbf{L}_j}(t) = \sum_{\tau=-\infty}^{\infty} \mathbf{L}_i(\tau)^{\mathrm{T}} \mathbf{L}_j(t+\tau)$$

Time-Difference-Of-Arrival Estimation

$$\hat{t}_{ij} = \arg\max_{t} R_{\mathbf{L}_i, \mathbf{L}_j}(t)$$

Time-Difference-Of-Arrival Estimation





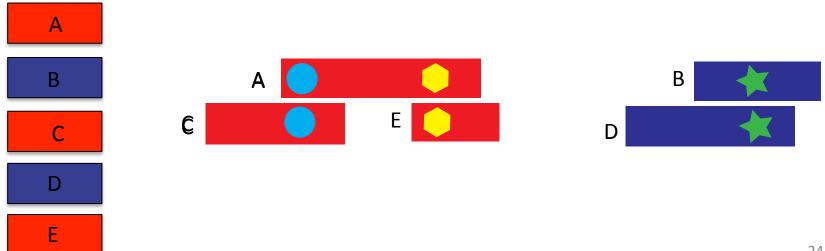
(b) Normalized landmark cross-correlation.

Outline

- I Introduction
- II Proposed Method
 - Non-Linear Transform
 - Time-Difference-Of-Arrival Estimation
 - Clustering
 - Synchronization Refinement
 - Efficient Computation
- III Evaluation
- IV Conclusions

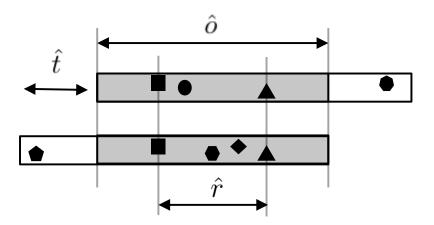
Clustering

- Agglomerative Clustering
 - Initialize each clip as a separate cluster and merged into successively larger clusters
 - Merge most confidence matches first
- Confidence as function of stats from best potential sync
- Reject unconfident merges based on decision rules



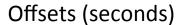
Merge Decision Rules

- Maximum of correlation
- Mean and variance of cross-correlation
- Percentage of total matching landmarks in the overlap region \hat{o}
- Overall time range \hat{r} defined by the set of matching landmarks
- Overlap region \hat{o} length
- Ignore overly common landmarks (i.e. 60Hz)



Clustering Output

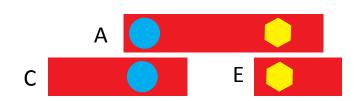
Groups w/pairwise sync offset and confidence scores



\hat{t}	B	D
B	0	-11.5
D	11.5	0

Confidence Score

\hat{S}	B	D
B	-	23
D	23	-



Offsets (seconds)

$\int \hat{t}$	A	C	E
$oxedsymbol{A}$	0	-5	10
C	5	0	-
$oxed{E}$	-10	_	0

Confidence Score

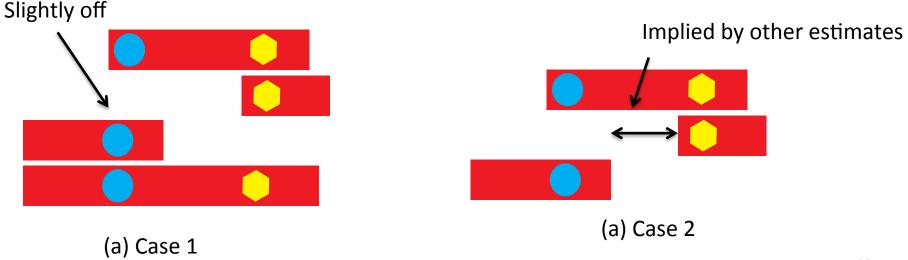
\hat{S}	A	C	$oxed{E}$
lacksquare	-	30	20
lacksquare	30	_	-
$oxed{E}$	20	_	_

Outline

- I Introduction
- II Proposed Method
 - Non-Linear Transform
 - Time-Difference-Of-Arrival Estimation
 - Clustering
 - Synchronization Refinement
 - Efficient Computation
- III Evaluation
- IV Conclusions

Synchronization Refinement

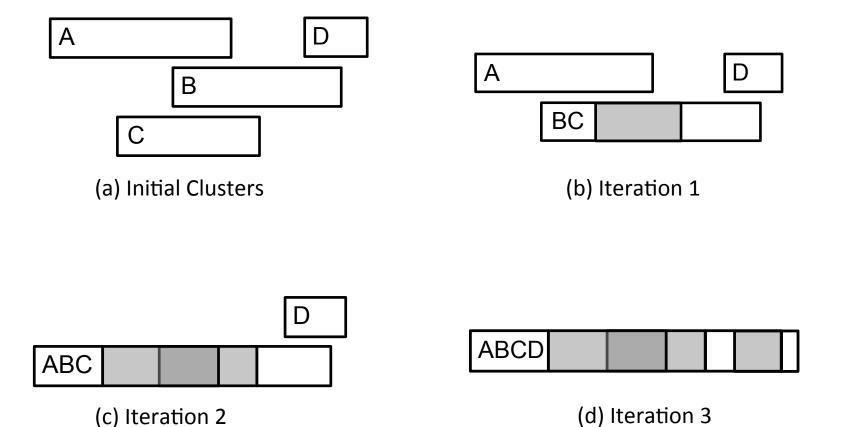
- Refinement is required for clusters of three or more if:
 - 1. Inconsistent pairwise TDOA estimates do not satisfy all triangle equalities $\hat{t}_{AC} \neq \hat{t}_{AB} + \hat{t}_{BC}$ within a cluster
 - One or more TDOA estimates within any cluster is unknown caused by non-overlapping clips



Greedy Match-and-Merge

- 1. Find the most confident TDOA estimate t_{ij} within the cluster in terms of $\hat{R}_{\mathbf{L}_i,\mathbf{L}_j}$ or similar confidence score.
- 2. Merge the landmark signals L_i and L_j . First time shift L_j by \hat{t}_{ij} and then multiply or add the two signals together (depending on the desired effect).
- Update the remaining TDOA estimates and confidence scores to respect the file merge.
- 4. Repeat until all files within the cluster are merged.

Greedy Match-and-Merge Graphically



Outline

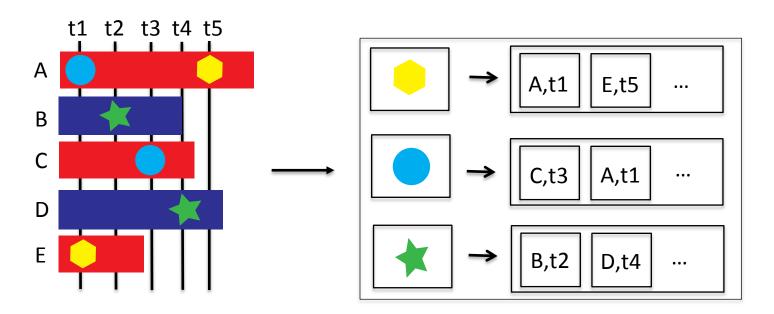
- I Introduction
- II Proposed Method
 - Non-Linear Transform
 - Time-Difference-Of-Arrival Estimation
 - Clustering
 - Synchronization Refinement
 - Efficient Computation
- III Evaluation
- IV Conclusions

Efficient Computation

- Leverage knowledge of landmark signal and perform "sparse" cross-correlation in a special way (fingerprinting)
- Use some form of associative array, map, or dictionary to store landmarks and compute all pairwise correlations
 - Direct arrays
 - Binary tree
 - Hash table

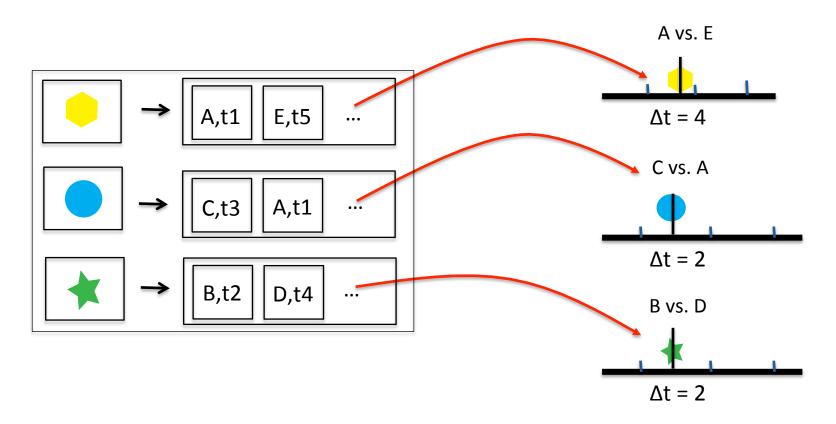
Map Structure I

- Create map structure of all landmarks
 - Key = $(f1, f2, \Delta t)$
 - Value = (FileID, AbsoluteTimeOffset)
- Matching files will have identical landmark
- Difference between AbsoluteTimeOffset of gives sync



Map Structure II

- Convert map structure to pairwise correlations
- For each landmark, compute all pairwise time differences and store in the appropriate pairwise correlation



General Computational Benefit

- Naïve pairwise correlations
 - 1. $\frac{P!}{2(P-2)!}$ pairwise correlations, P = number of files
 - 2. Each correlation $O(N \log(N))$, N =samples in file
- Drastically reduces the computational cost
 - 1. Eliminates pairwise correlations for clips that don't match
 - 2. Makes each pairwise correlation faster
- Computes correlation computation for only the salient parts (landmarks) of audio

Ideal Case

1. Pairwise Comparisons

- All landmarks are unique its group
- Only performs pairwise correlations within each group
- For large # groups/small # clips, this is savings huge

2. Single pairwise correlation

- Only correlate points with matching landmarks, no computation for 0s
- Ideal case with no false positive matches results in a O(M) cost, with M = number of matching landmarks

Outline

- I Introduction
- II Proposed Method
 - Non-Linear Transform
 - Time-Difference-Of-Arrival Estimation
 - Clustering
 - Synchronization Refinement
 - Efficient Computation
- III Evaluation
- IV Conclusions

Evaluation Metrics

Performance measures

- Precision, Recall, F1 score
- Computed on pairwise matches of final clusters

Computational cost

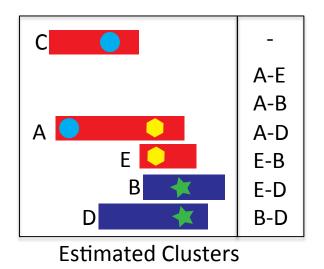
- Compute time (seconds)
- Throughput (seconds processed/seconds of compute time)

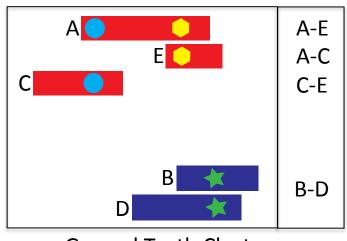
Benchmark

Comparison to commercial multi-camera software Plural Eyes

Precision, Recall, and F1

- Precision
 - fraction of estimated pairwise merges retrieved that are correct
- Recall
 - fraction of correct pairwise merges retrieved
- F1 score
 - harmonic mean of precision and recall 2PR/(P+R)





Ground Truth Clusters

P = 2/6

Datasets

- Speech (180 clips from film set)
 - Average length 20-40 seconds
 - 54 clusters of one file
 - 54 clusters of two files
 - 6 clusters of three files

- Music (23 clips from live music concerts)
 - Average length 3-5 minutes
 - 1 cluster of 7 files
 - 2 clusters of 8 files

Precision, Recall, and F1 Results

	Speech	Music	Speech + Music
Precision	100.0 %	100.0 %	100.0 %
Recall	97.0 %	100.0 %	99.2 %
F-Score	98.5 %	100.0 %	99.6 %

(a) Precision, recall, and F_1 -scores.

As expected from using the feature extraction of [Wang 2003]

Computational Cost

	Speech	Music	Speech + Music
Proposed	47.0	41.1	90.1 ≈ linear
Traditional	1550	197	3600 not linear

(a) Computation time (s).

	Speech	Music	Speech + Music
Proposed	164.6	146.5	152.7
Traditional	5.0	30.5	3.9

(b) Throughput (s/s).

Benchmark (Speech Dataset)

- Accuracy Measures
 - Proposed method F1 ≈ 99%
 - Plural Eyes 2.1.0 F1 ≈ 95%
- Computational Cost
 - Proposed method ≈ 3 minutes
 - Plural Eyes 1.2.0 ≈ 6 hours
 - Plural Eyes 2.1.0 ≈ 2 hours
 - Plural Eyes 2.1.0 (hard) ≈ 10 hours

Outline

- I Introduction
- II Proposed Method
 - Non-Linear Transform
 - Time-Difference-Of-Arrival Estimation
 - Clustering
 - Synchronization Refinement
 - Efficient Computation
- III Evaluation
- **IV** Conclusions

Future Work & Research Directions

- Video analog to photo "stitching"
 - Crowd-sourced multi-camera video
 - Easily change both video and audio viewpoint
- Denoising/improving audio quality from groups
- Spatial audio processing
 - Use for time delay estimation
 - Large-scale beamforming, directional listening, etc.

Conclusions

- Method of clustering and sync of multicamera videos using audio
 - Non-Linear Transform
 - Time-Difference-Of-Arrival Estimation
 - Clustering
 - Synchronization Refinement
 - Efficient Computation
- Fast and accuracy

References

- Jaap Haitsma and Ton Kalker, "A Highly Robust Audio Fingerprinting System With an Efficient Search Strategy," Journal of New Music Research, vol. 32, no. 2, 2003.
- A.L. Wang, "An Industrial-Strength Audio Search Algorithm," in Proc. 4th Int. Symposium on Music Information Retrieval (ISMIR), October 2003.
- P. Shrestha, M. Barbieri, and H. Weda, "Synchronization of multi-camera video recordings based on audio," in Proc. 15th Intl. Conf. on Multimedia, 2007.
- L. Kennedy and M. Naaman, "Less talk, more rock: automated organization of community-contributed collections of concert videos," in Proc. 18th Int. Conf. on World Wide Web, 2009.
- D. Ellis (2009). "Robust Landmark-Based Audio Fingerprinting", <u>http://labrosa.ee.columbia.edu/matlab/fingerprint</u>

Demo Video

Dave Matthews Band's "Everyday"

Clustering and Synchronizing Multi-Camera Video via Audio Fingerprinting

Nicholas J. Bryan, Paris Smaragdis*, and Gautham Mysore*

Stanford University | CCRMA
*Advanced Technology Labs | Adobe Systems

CCRMA DSP Seminar, November 13th 2012