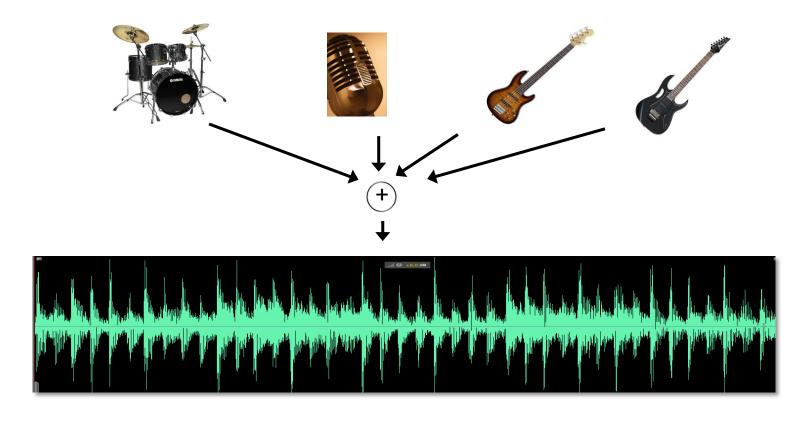
An Efficient Posterior Regularized Latent Variable Model for Interactive Sound Source Separation

Nicholas J. Bryan, Stanford University Gautham J. Mysore, Adobe Research

ICML 2013

Motivation I

Real world sounds are mixtures of many individual sounds



Current State-of-the-Art

Non-negative matrix factorization (NMF)
 [Lee & Seung, 2001; Smaragdis & Brown 2003]

Related latent variable models (LVM)
 [Raj & Smaragdis 2005, Smaragdis et al., 2006]

Latent Variable Model

Probabilistic latent component analysis (PLCA) [Smaragdis et al., 2006]

$$\mathbf{X} \approx P(f,t) = \sum_{z} P(z) P(f|z) P(t|z)$$

$$P(f|z)$$

$$P(z)$$

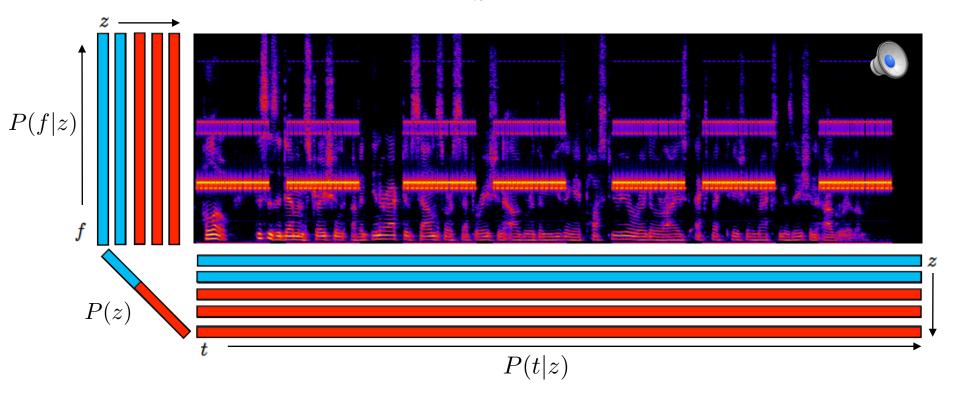
P(f|z) Basis vectors, frequency components, dictionary

P(z) Latent component weights

P(t|z) Time activations or gains

Latent Variable Model

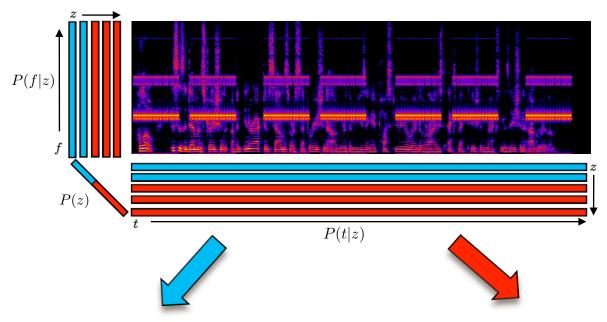
$$\mathbf{X} \approx P(f,t) = \sum_{z} P(z) P(f|z) P(t|z)$$

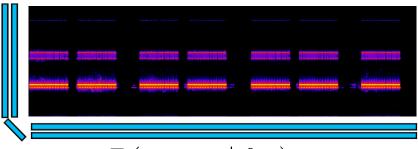


Solve via an expectation-maximization (EM) algorithm

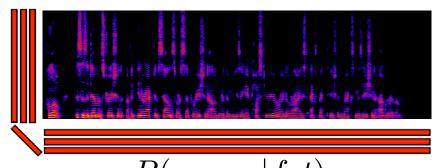
Latent Variable Model

$$\mathbf{X} \approx P(f,t) = \sum_{z} P(z) P(f|z) P(t|z)$$





$$P(s=s_1|f,t)$$



$$P(s = s_2|f, t)$$

Problems

Requires isolated training data (supervised/semi-supervised)

Don't incorporate auditory/perceptual models of hearing

One-shot process, cannot correct for poor results

Very difficult, underdetermined problem

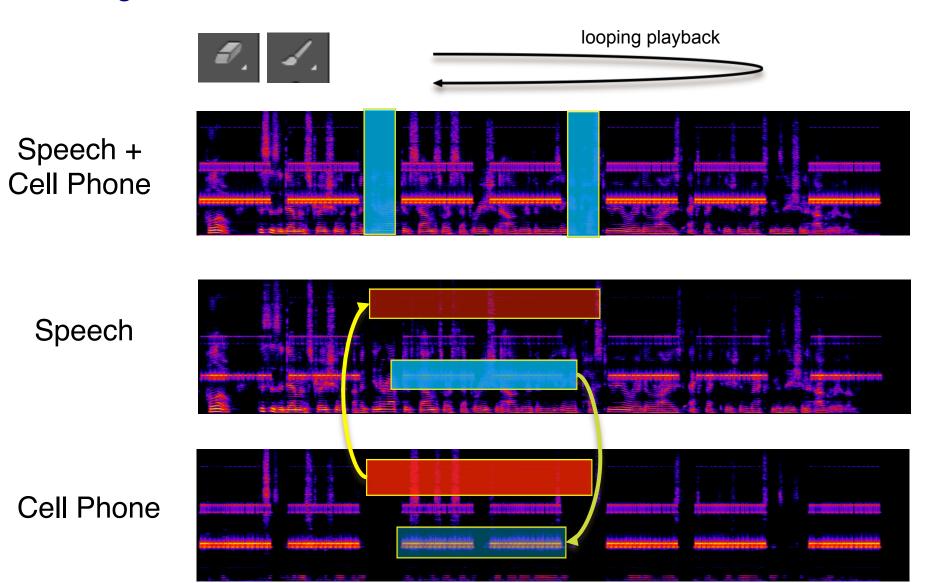
Focus

Eliminate the need to explicit training data

Method of user feedback to guide separation

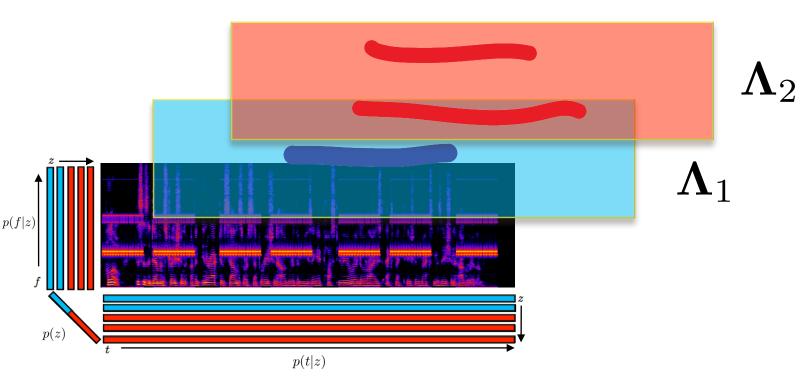
Algorithm to incorporate the user feedback

Paradigm: Listen, Paint, Remove



Latent Variable Model w/Painting Constraints

$$\tilde{P}(f,t) = \sum_{z} \tilde{P}(z)\tilde{P}(f|z)\tilde{P}(t|z)$$



Incorporate painting annotations into the model

Constraints

Constraints typical encoded as:

$$P(f|z) \quad P(t|z) \quad P(z)$$

- Prior probabilities on model parameters
- Direct observations
- Does not (reasonably) allow time-frequency constraints
- Posterior regularization [Graça et al., 2007, 2009]
 - Complementary method that allows time-frequency constraints P(z|f,t)
 - Iterative optimization procedure for each E step
 - Well suited for our problem

Expectation Maximization

$$\ln P(\mathbf{X}|\mathbf{\Theta}) = \mathcal{F}(Q,\mathbf{\Theta}) + \mathrm{KL}(Q||P)$$
$$\ln P(\mathbf{X}|\mathbf{\Theta}) \ge \mathcal{F}(Q,\mathbf{\Theta})$$

E Step:
$$Q^{n+1} = \underset{Q}{\operatorname{arg\,max}} \mathcal{F}(Q, \mathbf{\Theta}^n)$$
$$= \underset{Q}{\operatorname{arg\,min}} \operatorname{KL}(Q||P)$$

M Step:
$$\mathbf{\Theta}^{n+1} = \underset{\mathbf{\Theta}}{\operatorname{arg max}} \mathcal{F}(Q^{n+1}, \mathbf{\Theta})$$

Expectation Maximization w/Posterior Constraints I

$$\ln P(\mathbf{X}|\mathbf{\Theta}) = \mathcal{F}(Q,\mathbf{\Theta}) + \mathrm{KL}(Q||P)$$
$$\ln P(\mathbf{X}|\mathbf{\Theta}) \ge \mathcal{F}(Q,\mathbf{\Theta})$$

E Step:
$$Q^{n+1} = \underset{Q \in \mathcal{Q}}{\operatorname{arg max}} \mathcal{F}(Q, \mathbf{\Theta}^n)$$
$$= \underset{Q \in \mathcal{Q}}{\operatorname{arg min}} \operatorname{KL}(Q||P)$$

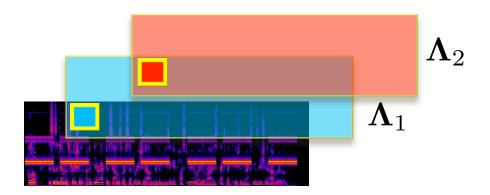
M Step:
$$\mathbf{\Theta}^{n+1} = \underset{\mathbf{\Theta}}{\operatorname{arg max}} \mathcal{F}(Q^{n+1}, \mathbf{\Theta})$$

Linear Grouping Expectation Constraints

$$\underset{Q \in \mathcal{Q}}{\operatorname{arg \, min}} \ \operatorname{KL}(\ Q(z|f,t) \mid\mid P(z|f,t) \)$$

• For each time-frequency point of P(z|f,t), solve

$$\begin{array}{ll}
\operatorname{arg\,min} & -\mathbf{q}^{\mathrm{T}} \ln \mathbf{p} + \mathbf{q}^{\mathrm{T}} \ln \mathbf{q} \\
\operatorname{subject\ to} & \mathbf{q}^{\mathrm{T}} \mathbf{1} = 1, \ \mathbf{q} \succeq 0
\end{array}$$



$$\lambda^{\mathrm{T}} = \left[\mathbf{\Lambda}_{1_{ft}} \, \mathbf{\Lambda}_{1_{ft}} \, \mathbf{\Lambda}_{1_{ft}} \, \ldots \mathbf{\Lambda}_{2_{ft}} \, \mathbf{\Lambda}_{2_{ft}} \, \mathbf{\Lambda}_{2_{ft}} \right]$$

Fast Updates

With simple penalty, both E and M steps are in closed form

Reduces to simple, fast multiplicative updates vs. NMF

Roughly the same computational cost as without constraints

expectation step for all
$$z, f, t$$
 do
$$Q(z|f, t) \leftarrow \frac{P(z)P(f|z)P(t|z)}{\sum_{z'} P(z')P(f|z')P(t|z')} \qquad Q(z|f, t) \leftarrow \frac{P(z)P(f|z)P(t|z)}{\sum_{z'} P(z')P(f|z')P(t|z')}$$
 end for end for

Evaluation

- BSS-EVAL metrics [Vincent et al., 2006]
 - Signal-to-Distortion Ratio (SDR)
 - Signal-to-Interference Ratio (SIR)
 - Signal-to-Artifact Ratio (SAR)

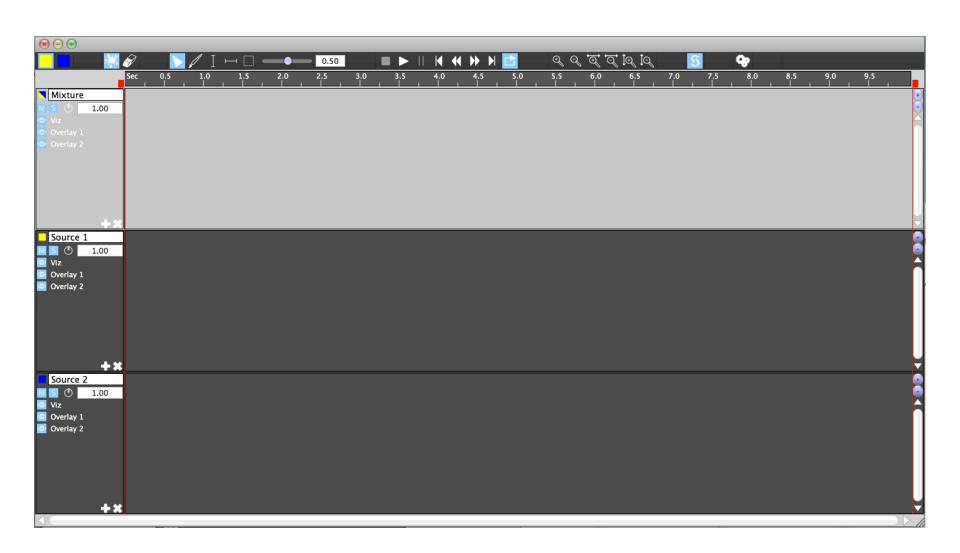
Test material

- Cell phone + speech (C), drums + bass (D), orchestra + cough (O), piano + wrong note (P), siren + speech (S)
- Vocals + background music (S1, S2, S3, S4)

Results

- Outperformed prior state-of-the-art on tested material
- Outperformed SiSEC 2011 vocals + background music winner

Live Demonstration



Jackson 5 Remix

Jackson 5's "I want You Back"

Cher Llyod's "Want U Back"

Remix

A Look Back

Perceptual domain, objective evaluation is difficult

Human evaluation within the learning process

Processing training data only

Conclusion

- Sound source separation algorithm
 - Time-frequency constraints via posterior regularization
 - No explicit training data
 - Efficient, interactive algorithm w/closed-form update equations
 - Improved separation quality over prior work
 - Open source software
- Poster ID: 348
- Demos at ccrma.stanford.edu/~njb/research/iss

An Efficient Posterior Regularized Latent Variable Model for Interactive Sound Source Separation



Nicholas J. Bryan, Stanford University Gautham J. Mysore, Adobe Research

ICML 2013