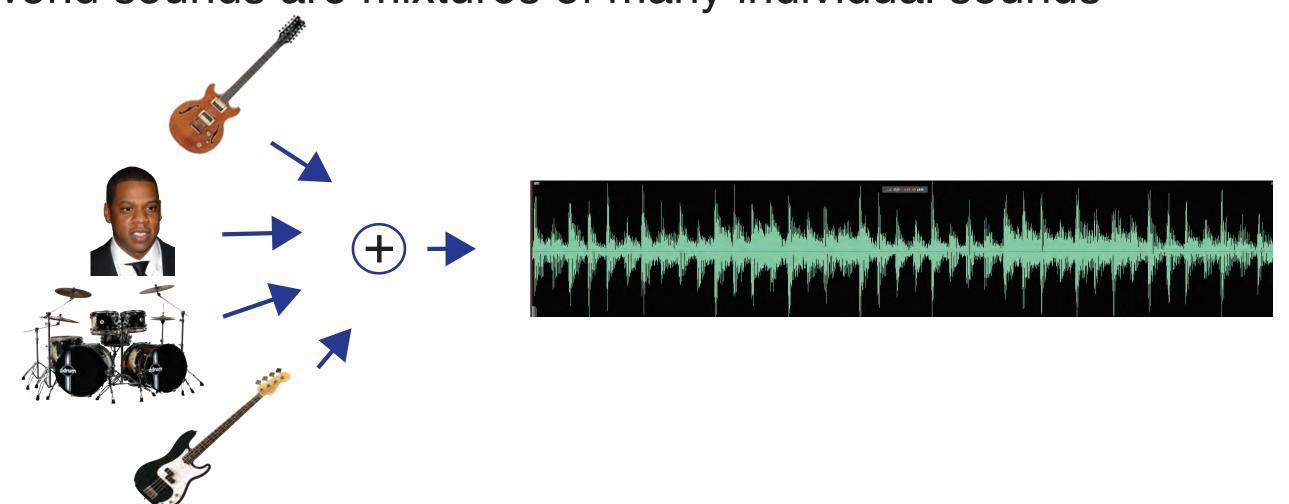
An Efficient Posterior Regularized Latent Variable Model for Interactive Sound Source Separation

Nicholas J. Bryan¹ & Gautham J. Mysore² Center for Computer Research in Music and Acoustics, Stanford University ²Adobe Research

Introduction

Real world sounds are mixtures of many individual sounds



It's useful to separate a mixture into its respective sources

music transcription

audio denoising

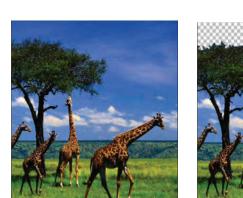
audio-based forensics

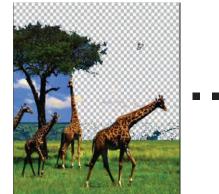
music remixing

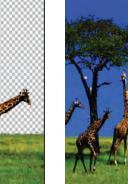
- Current non-negative matrix factorization and related probabilistic models methods can perform well, but:
 - -require training data
 - -may also yield poor results
 - -are typically a one-shot process w/no user-feedback

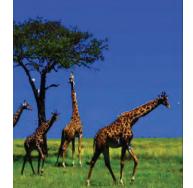
Analogy

A layers-sculpting-like environment for audio







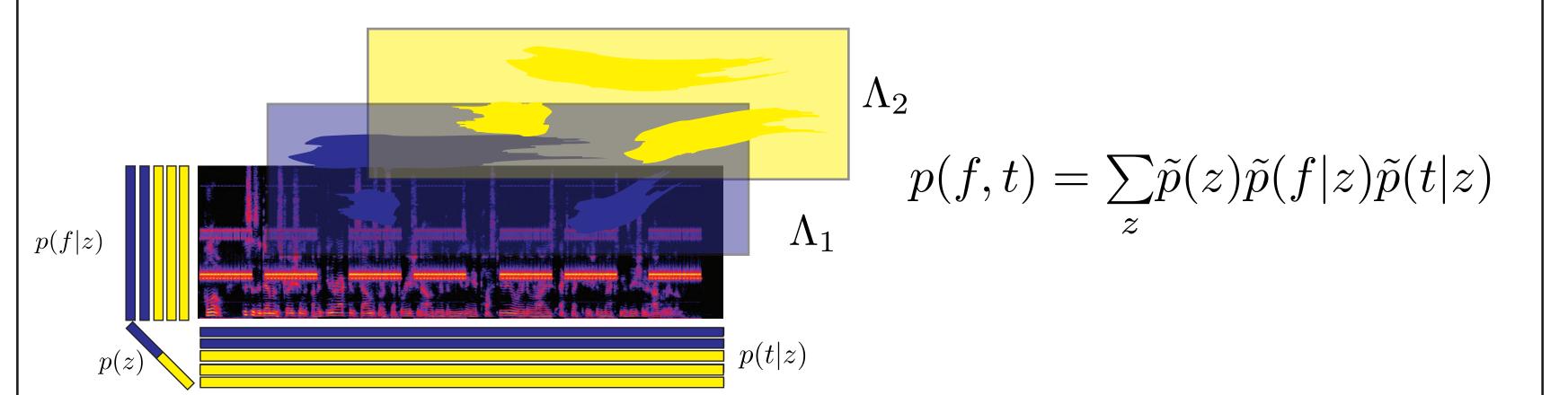


Remove burden of being perfect the first time and interact w/algorithm

Proposed Method

Probabilistic model of audio spectrogram data

$$P(f,t) = \sum_{z} P(z)P(f|z)P(t|z)$$



- Parameter estimation via expectation-maximization
- No explicit training data needed

Posterior Regularization

- Incorporate painting annotations as penalty constraints
- Difficult to encode time-frequency-source constraints via priors
- Use framework of posterior regularization for EM algorithms
- Contraints on the posterior (E step) as oppose to standard priors (M step)

$$Q^{n+1} = \underset{Q}{\operatorname{arg\,min}} \operatorname{KL}(Q||P) + \Omega(Q)$$

$$\Theta^{n+1} = \underset{\Theta}{\operatorname{arg\,min}} \operatorname{KL}(Q||P) + \Omega(Q)$$

$$\Theta^{n+1} = \underset{\Theta}{\operatorname{arg\,min}} \operatorname{KL}(Q||P) + \Omega(Q)$$

$$\Theta^{n+1} = \underset{\Theta}{\operatorname{arg\,min}} \operatorname{KL}(Q||P) + \Omega(Q)$$

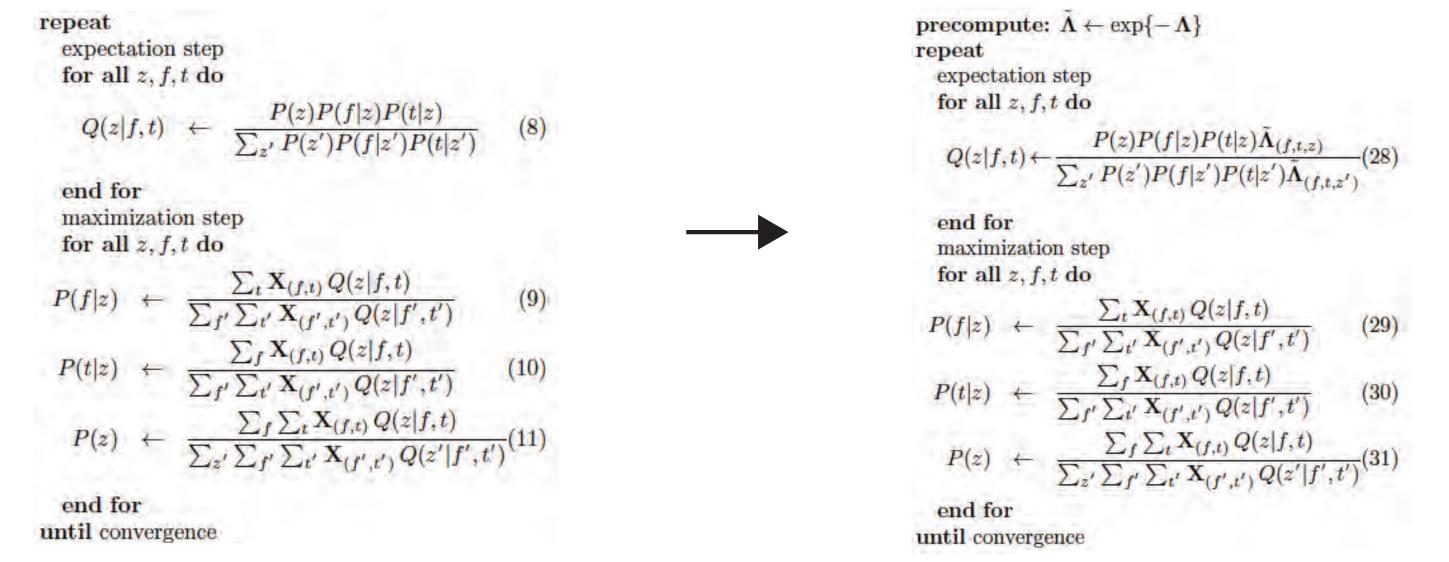
- Map painting annotations to linear grouping expectation constraints
- Within a single E step, solve for each time-frequency point:

arg min
$$-\mathbf{q}^{\mathrm{T}} \ln \mathbf{p} + \mathbf{q}^{\mathrm{T}} \ln \mathbf{q} + \mathbf{q}^{\mathrm{T}} \lambda$$

q

subject to $\mathbf{q}^{\mathrm{T}} \mathbf{1} = 1, \ \mathbf{q} \succeq 0$
 $\lambda = [\alpha, \alpha, \beta, \beta, \beta]$

Results in closed-form, efficient E and M steps — interactive speeds



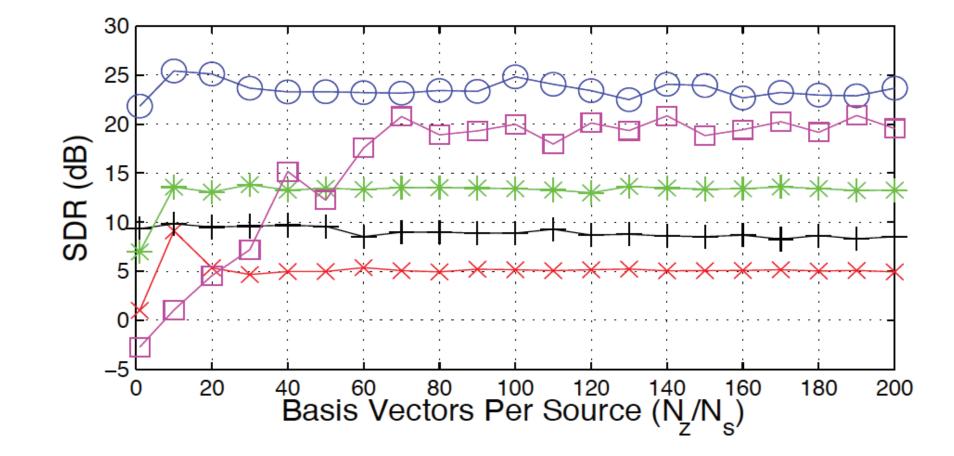
Evaluation

- Use SDR, SAR, SIR evaluation metrics for comparison
- Tested on a variety of sounds: cell phone + speech (C), drum + bass (D), orchestra + cough (O), piano + wrong note (P), siren + speech (S), vocals + background music (S1, S2, S3, S4)

EVAL	МЕТНОВ	C	D	O	P	S
SDR	ORACLE	26.9	15.1	12.2	26.1	26.7
	BASELINE	-0.6	0.2	1.1	0.9	-4.1
	PROPOSED	24.8	11.0	9.7	22.0	21.8
SIR	ORACLE	34.1	20.0	16.6	29.9	34.3
	BASELINE	0.1	0.9	2.2	1.1	0.2
	PROPOSED	35.0	19.1	14.6	26.3	29.0
SAR	ORACLE	27.9	16.8	14.6	28.8	27.6
	BASELINE	14.0	12.6	10.5	17.5	7.0
	PROPOSED	25.8	12.6	11.7	24.3	23.2

	THEFTICE	I	~~	~~	~ 1
SDR	ORACLE	13.2	13.4	11.5	12.5
	BASELINE	-0.8	0.2	-0.2	1.4
	LEFÉVRE	7.0	5.0	3.8	5.0
	DURRIEU	9.0	7.8	6.4	5.9
	PROPOSED	9.2	11.1	7.8	7.9
SIR	ORACLE	17.8	18.0	17.5	19.5
	BASELINE	0.5	1.6	0.9	3.1
	LEFÉVRE	13.0	14.1	8.8	11.5
	DURRIEU	16,4	16.8	13.0	12.6
	PROPOSED	17.4	20.1	14.8	13.8
SAR	ORACLE	15.4	15.4	13.1	13.6
	BASELINE	8.9	8.5	8.8	10.0
	LEFÉVRE	8.9	7.3	6.1	6.5
	Durrieu	10.5	9.0	8.0	8.3
	PROPOSED	10.7	12.0	9.0	9.5

Relatively insensitive to the number of latent components (if large enough)



On the examples tested, the proposed method outperformed prior work

Conclusions

- Source separation algorithm that allows:
 - -time-frequency constraints via posterior regularization
 - -efficient, interactive algorithm
 - -improved results over prior work
- For audio and video demonstrations, please see https://ccrma.stanford.edu/~njb/research/iss

